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PREFACE

Some time ago, a precision A.C. bridge for measuring magnetic
susceptibility of rocks and its anisotropy was developed [13] now
produced by the GEOFILZIKA, n.p. under the trade mark KAPPABRIDGE KLY 1,
This work resulted from the requirements of the users of the bridge in
question, yet we believe it can be of some use to wide circles of wor-

kers in the field of rock magnetism.

The theory of measurement of the magnetic susceptibility aniso-
tropy interpreted here originates from the methods of mathematical
statistics, in the first place from Hext’s statistics of second-order
tensor. A deacription of computing the susceptibility tensor, the
principal susceptibilities and principal directions from the measured
directional susceptibilities is given, and 2 new design of measuring
directions is proposed, some of whose properties are of a great ad-
vantage. Special attention is paid to the question of estimating the
accuracy of the computed principal susceptibilities and principal di-
rections, as well as to the queation of statistical tests for aniso-
tropy. The theory is extended by a discussion of the two-dimensional
problem concerning the rocks whose susceptibility shows an approxima-

tely rotational symmetry.

To make possible the application of the principles presented,
a computing program ANISO 10 in the language FORTRAN IV was worked out
(authors V. Jelinek and M. Frankovd). The program complexly processes
the data measured on a rock specimen ; it determines the sus-
ceptibility tensor and the parameters derived therefrom in several

coordinate systems, carries out tests for anisotropy and computes the



accuracy estimates o? the results. The description of the program’s
function is given in this work, the program listing can be obtained

from GEOFYZIKA, Nn.p.

The suthor would like to thank Mrs. Skorkovskd for her operstive
help in the final redaction, and Dr., F. Hrouda for the experimental

material that has been made use of for the illustration.

Brno 1976 Vit Jelinek
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INTRODUCTION

Magnetic susceptibility of a linear anisotropic medium is & se-
cond-order tensor quantity. That is why its messurement is in many as-
pects more complicated than the measurement of the vector or scalar

quantities,

The measuring principles used are manifold. The most frequent
methods are based on measuring the so called directional susceptibi-
lities, corresponding to certain suitably chosen directions in the
rock specimen. (A typical device that performs its measuring on this
principle is the A.C. bridge [10, 11, 13].) From the directional su-
sceptibilities the tensor components are then computed. As the suscep-
tibility tensor is symmetrical and thus has six independent compo-
nents, it would be sufficient to measure directional susceptibilities
in six suitably chosen directions, But, usually, a larger number of
directions is chosen (e.g. nine, fifteen or eighteen) to reach higher
accuracy, to be able to estimate measuring errors and to exclude the

measurements laden with gross errors.

The choice of a suitable system of measuring directions repre-
sents an interesting problem in itself, From the point of view of the
measuring practice an easy realization of the directions is impor-
tant, From the standpoint of the statistical processing of the re-
sults, it is advantageous for the design to be rotetable. The problems
of rotatable design are dealt with by Hext [7]; but the designs

proposed by him do not satisfy the postulate of an easy realizability.



From the susceptibility tensor the principal susceptibilities
and principal directions are computed. From the methematical point of
view the question here is the determination of eigenvilues and eigen-

vectors of a square natrix that expresses susceptibility tensor.

After the above mentioned computations, we 76t the susceptibi-
lity parameters expressed in the coordinate system associated with the
specimen. Neverthelesa, the interpretntion of the recsults usuelly
neads the susceptibility parameters to be transformed into further

systems -~ the geographic =nd tectonic ores.

The most difficult problem is the stetistical consideration of
the accuracy of the results, eapecially of the accurscy of the princi-
pal susceptibilities and directions. One of the firat to try to solve
this problem was Stone [22]. But his experiment is based on too
simplified conceptions, and the practical 3pplicability of the propo-

sed method is, in our opinion, rather rproblematic.

A mathematically founded theory was created by Hext [7]. His
work deals with the second-order tensor statistics in rfeneral, but the
motive for its elaboration were the very problems from the field of

measuring the snisotropy of magnetic susceptibility.

The conception of his work i3 very zeneral, and its form rather
close, This mkes a practical application of it rather difficult. As
far as we know Trom published works, ilext's very fertile ideas were
teken advantage of ir. one case only [10], and then only as a demon-

stration of measurement processing.

In this work we are trying to interprete the application of the
statistices of the second-order tensor in a more intelligible way, to
extend it in a certsain line, and to sug:est the limits of its applica-
bility. levertheless, this intention is not our only aim; the work in-
¢ludes all the problems of measuring the anisotropy of magnetic suscep-

tibility in the above mentioned extent. Its logical accomplishment is
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the computing program that represents an effective tool for transmit-

ting the achieved resulte to the immediate geophysical practice,.

COMMENTS TO SYMBOLICS

We ghall briefly state the main principles according to which

the vectors, tensors and matrices will be denoted.

All the coordinate systems that will serve to express vectors
and tensors will be cartesian, As to this circumstance, no further

statement will be made.

A vector (in a physical or geometrical sense of the word) will
be denoted by a once underlined letter, e.g., d. The same denotation
will also be used for the column matrix expressing the respective vec-
tor in the coordinate system considered as fundamental. In thias sense

we then write d = (4 4, d3]£

The second-order tensor will be denoted by a twice underlined
letter, e.g. k. The same symbol will also denote the square matrix
expressing the tensor in question in the fundsmental coordinate sys~-

tem,

The coordinate system of the specimen that is characterized in
chapter 3, will be considered as fundamental., Only in chapter 2 shall

we somewhat deviate from this principle,

A matrix expressing a vector or tensor in another than fundsmen-
tal system will be denoted by the basic symbol completed by a distin-

Y . ¥

guishing index in the top righthand corner, e.g. d", k7.

A once underlined letter will also be the denotation of any
column matrix, even if it does not express a vector; a twice under-

lined letter will denote any matrix that is not a column matrix.

11



1. THREE-DIMENSIONAL PROBLEM

1.1 MAGNETIC SUSCEPTIBILITY OF ANISOTROPIC MEDIUM, BASIC
NOTIONS

Magnetic susceptibility of a linear magnetic medium may be de=
scribed by a symmetrical second-order tensor k; this tensor will be

expressed by a square matrix

(1.1)

0w
n

keq
kyp kpp kps

ky3 k23 Ky3f o

or, alternatively, by a column matrix

(1.2) k=, k k3 k Kk ks]'=

!
11 ¥22 k33 Ko oy Ky

with six components,

Let us choose in the considered linear magnetic medium an ar=-
bitrary direction and let this direction be expressed by the unit

directional vector d = [@1 d, d3T .

12



The quantity

(1.3) 2, =dk4

will be called directional susceptibility corresponding to the consi-

dered direction d. The relation (1.3) can be modified to

(1.4) 3D = a‘(g) k,
where
(1.5) (@) = [ &2 o 2000, 200, 24,3y] .

Let us denote the eigenvalues of the matrix k through
3, 3, 3, the respective eigenvectors through Pis Pas P3¢ These

quantities satisfy, as well known, the relation

(1.6) E P_i = “i ]-)1 (i = i, 2, 3)
or
(1.7) pPkp=[o i
»,
I *J

where p = [Ry, Dy, 23] and p; = [pﬁ Pay pn]' + The vectors
Pj are called the principal directional vectors of the principal ai-
rections, the numbers *; principal susceptibilities. Formal reasons

will make us choose a numbering of the characteristiec

13



quantities that o = e, Z otye

If all the three principal susceptibilities are positive, as
usual in rocks, the susceptibility tensor may be interpreted geomet-
rically by an ellipsoid called susceptibility ellipsoid [1'7] .

In a general case the principal susceptibilities are distinct.
The susceptibility ellipsoid is tri-axial, its semi-axes lie in the
directions 1p,, #p,, #p; and their length is 1//a, 1/vky, 1/\&;. The
medium in qurestion is called tri-axial anisotropic.

If two principal susceptibilities coincide and the third one ia
distinct, the susceptibility ellipsoid is rotational. The medium is
called rotationally anisotropic.

Finally, a case may occur of all the three principal susceptibi-
lities coinciding. This is a case of an isotropic medium, the suscep-
tibility ellipsoid degenerates into a sphere. The isotropic medium

may be considered as a apecial case of the anisotropic medium.

An important characteriatic of the anisotropic medjum is the
mean susceptibility ¢¢, defined as the mean value of all the directio-
nal susceptibilities. It is also equal to the arithmetical mean of the
principal susceptibilities

1
(2.8) x 'T"( 9‘1 + *2 + “3) )

or, more generally, to the arithmetical mean of three directional sus-
ceptibilities corresponding to three arbitrary, mutually perpendicular

directions; it is, further, equal to the arithmetical mean of the dia-
gonal elements of the matrix expressing the susceptibility tensor

(1.9) % = L(kyy + kpp + ky3),

14



1.2 ESTIMATING SUSCEPTIBILITY TENSOR FROM THE MEASURED
SYSTEM OF DIRECTIONAL SUSCEPTIBILITIES

Let ua suppose such a way of measuring, where the device in-
dicates, directly or after a simple correction, the directional sus-
ceptibility,

To this type belong the devices [10, 11] as well as the
KAPPABRIDGE KLY-1, the prototype of which is described in [13].

We shall start from a situation, where the system of directional

susceptibilities has been measured in certain chosen directions.

For the determination of six independent elements of the suscep~
tibility tensor it would be sufficient to measure directional suscep-
tibilities in six suitably chosen directions, from which no two direc-
tions are equivalent. Because of reasons stated in the introduction,
the measuring is performed in a more extensive system of directions,
and the elements of the susceptibility tensor are then determined by
means of the least aquare method 1). Its application is, in the given
case, relatively easy, as the defining equations are linear.

Let usa now consider a measurement in n directions des doy eoey
4,; the corresponding measured directional susceptibilities will be
denoted Fém,i'e' D2? **os 5Dn' The defining equations will be written in

in a matrix fom

(1010) i,Dlé!'.'é’

- i e o

1) The theoretical principles of the least square method can be found
in (1], concrete applications to anisotropy in [7, 10, 15] .

15



where X, and 9 are matrices of the type (n x 1) with the compo-
nents éEDi and 51, respectively, n = 6. The matrix A of the type
(n x6)

(1.11)

it o
/]
I
=1
[
~

8(g,)

will be called - according to Hext - design matrix., The row submatrix
a(d;) is given by the equation (1.5). We assume that the directions

are chosen suitably,so that A is a full-rank matrix, its rank being 6.

The errors o ; are all supposed to have the distribution
N(O,Ga) and to be mutually independent.For the matrix k expressing
the susceptibility tensor we shall obtain, by means of the least square

method, the best unbiased estimate

(1.12)

-]
1]
)
HE
o
]
-
3
X!
(]
L ]

The elements of the matrix g (estimates of the independent components
of susceptibility tensor) have normal distribution with the covariance

matrix 62!,
(1.13) s¥v=d%int.

For each of the chosen directions a certain "fitted" value of di-
rectional susceptibility can be computed from the estimated susceptibi-

lity tensor. These fitted values are given by an equation analogous to

(1.10)

16



%>
(=]
]
np=
T

(1,14)

The difference iDi - ;eDi is the residual error of the i-th direc-

tionsl susceptibility. The residusl sum of squares

o] [&p- &) -

%>

(1.15) S, = [#p -

>

0

=
1]

-’ L
= Z2p8p-¥id

~ A N
= Zp#p - ¥pep,

R

is distributed =s 62)‘(2, where X2 is a random variable following

chi-square distribution on n - 6 degrees of freedom. The quantity

{1.16)
8 = 5,/(n = 6)

represents the unbviased estimation of the dispersion v 2 .

The dispersion o2 and the corresponding standard deviation
will be called dispersion of directionsl susceptibility and stan-

dard error of directional susceptibility, respectively 1.

1) In connection with the computing program the quantities 82 and 8
will be briefly called fundamental Jdispersion and fundamental
standard deviation, respectively.

17



1.3 A ROTATABLE DESIGN OF FIFTEEN MEASURING DIRECTIONS

Formally, the choice of measuring directions is limited only by
the condition that the design matrix A must have full rank, That does
not mean, of course, that an arbitrary design of directions meeting

the stated condition is suitable for practical measurement.

Hext [7] referring to [8] shows that there exist particularly
advantageous designs giving covariance matrices that are invariant with
respect to any orthonormal transformation (rotation) of the coordinate

system,

For a design of directions with the mentioned property the deno-
tation rotatable design is used. Every rotatable design of n directions

has the covariant metrix o 2\_1 of the form

(1.17) 6%y - fl—z- (24 -6 -6 ]
- 24 -6
-6 -6 24
15
15
8 15 _

and, vice versa, any deaign of n directions with the covariance matrix
of the form stated is rotatable, Hext presents a whole series of rota-
table designs that have a common disadvantage in a difficult realiza-

tion of the individual directions when measuring.

18



Fig. 1. 1 Rotatable design of 15 measuring directions.
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Fig. 1. 2 Marking a cube-shaped specimen for anisotropy measurement.

(1) @ (6) @ (1) @

(2) <\> (7 ® (12) ®

(3) V ® || w) | { H
(4) </> (9) @ (14) @ Y
(5) ® (10) ® (15) ®

Fig.1. 3 Implementation of the rotatable design of 15 measuring directions. The positions
of a cube shaped specimen with respect to the magnetic field vector H, I. e. with
respect to the directed coll axis, are shown.

20



We have found a rotatable design of 15 directions, devoid of this dis-
advantage. This design is illustrated in the figure 1.1 by the end-
pointe of the directional vectors on the unit sphere. It has arisen
from the formerly used non-rotatable design of 18 measuring directions
by omitting the directions opposite to the directions marked in the
figure by the numberas i, 8, 13, The realization of this rotatable de-
sign of 15 directions for a cubic specimen is demonstrated in the fi-
gure 1.3; the way of marking the specimen by a triad of arrows is
shown in the figure 1.2.

The design matrix A of the considered rotatable design has the form

4
(1.18) A=51 1 -2 ]
= 213 3 2
2
1 1 -2
1 1 2
p 1 -2
1 1 2
2
1 1 -2
i i 2
1 1 -2
1 1 2
2
1 1 -2
|1 1 2].

By substituting from (1.18) into (1.12) we shall get the rela-
tion for the best unbiased estimate of the components of the suscep-

tibility tensor

(1.19)

Fii'=,—'5r3 3 83 3-2-2-2-2-2 3 3-2 3 3] [dip ]

. 3 3-2 333383 3-2-2-2-2-2 .

. ~2-2-2-2-2 3 3-2 3 3 338133 .

. % 5 =55 .

N -5 5 =5 5

ks-J -5 5 -5 5 -~

. L - oL
D15] .

21



The covariance matrix will be determined according to (1.13) or

(1017) « Ne 8et

(1.20) sy = ¢2[ 0.4 -0.1 -0.1
-0.1 0.4 =0.1
—0.1 ~0.1 0.4
0.25
0.25
L 0.25] »

The best unbissed estimate a4 of the mean suasceptibility ia gi-

ven by the relation
A A ~
(1421) R = {(k, + ky, + k33)

which immediately follows from the equation (1.9) and from the Gauss-
<Markov theorem [1].

Using the relations (1.15, 1.19, 1.21) the residual sum of squa-
rea for the rotatable design of fifteen measuring directions can be

expreased

(1.22)

e nlw _ a2 2 02, 02 22 a2 42
o= Fpdp-2(:f +ky ¢+ k§ + 2kl + 2 + 2kg) -94° .,

L]
|

22



1.4 VARIATIONS OF PRINCIPAL SUSCEPTIBILITIES AND OF PRINCIPAL
DIRECTIONS

The estimated components of the susceptibility tensor may be,

according to the preceding chapter, written in a matrix way

W)

(1.23) =k + dk ,
where the matrix dk expressing the variations of the estimate 2

has central normal distribution with the covariance matrix dag

according to (1.17).

Let us suppose that the variationa of the principal directiona
and principal susceptibilities may be expressed in a differential

form

(1.24) B; =p; +
8. =a¢i+dx- (i=1,2, 3,

and that thus the elements of the covariant matrix 62! are small to
such an extent that all the powers and products of the differentials
are negligible, This formulation of the assumption is taken over from
Hext [7]. From the mathematical point of view it is sure not to be
quite correct. An exact formulation would, however, be very compli-

cated,

Essentially, the meaning of the assumption is the following :
differences between any two principal susceptibilities must be sub-

stantially greater than the standard measuring error & .

23



If the assumption in question is satisfied, 80 ~ as has been
proved by Hext - it holds in the first place that the vector dp; is
perpendicular to the vector pj+ Thus, the vector dgi lies in the pla-
ne @1' which touches the unit sphere in the endpoint of the vector
Pse In the plane o3 we shall introduce a cartesian system of coor-
dinates with the origin in the endpaint of the vector B =nd with the
axes parallel to the directiona Bj» By The components of the vector

dp; in this coordinate system will be denoted dpji' apysi
(1.25) dpy = [dei dei]’
and it holds dpj‘ = ~dpyj

For variations of the principal susceptibilities and principal

diractions it holds

(1.26) [a aeiﬁ e[ by 1 [,
d o, b2 dk,
a 2y b33 ks
P2y Ria/l 2y - 2))| [dk,
P32 B3/ #p - #3)| Hdkg
|9P34 | 213/ #y - 23)) |

the right side will be written, more briefly, g dk) ot the seme time

Bk = Biy = [szpu PpjPax P3P (PrjPax * PajPx)

(Dszu + P3592k) (pljp:}k + ijpik)] .

The relation (1.26) represents a linear tranaformation of random va-
riables, From the theory of linear transformations of the rendom va-

riables, see e.g. [1, 6], it follows that the covariance matrix '52!

24



of the elements of the column matrix on the left side of the equation

(1.26) will be computed according to the relation
g2 52 )
(1.27) - Ppvp .

¥e want 4o emphesize that further considerations will concern
the rotatable design of 15 measuring directions only. The results for
other rotatable designs are very similar, whereas the results for

non-yotatable designs are substantially more complicated.

In the considered case, for the covariance matrix 6'2'[ we get
(1.28)

£ - 62 0.4 ~0.1 -0.1
-0.1 0.4 =0.1
-0.1 =0el 0.4 .
[2( 5y~ “23—2
[2C e ;)] ™
| (2( 24- a:3)] "ZJ.

From the position of the 2ero non-diagonal e¢lements of
62! it follows that the variations dpjk of the principal directions

are mutually independent and also independent of the variations of

the principal susceptibilities.

The principal susceptibilities # (i =1, 2, 3) have altoge-

ther normal distribution with dispersion 0.4 82,

The statistic u = (‘;i - 23)/ V0.4 G has etendard normal di-
stribution, so that the tolerance interval that will exclude 10Ce %
of the least likely results will be

25



(1.29) (Ri —‘/ 0.46 uci_“/.‘,), xi + 0.‘6 “(1-“’/2)> ’

where Ueq_oc/2) is the 100(1 - o¢/2)% quantile of the standard normal

distribution.

The vector dp;, expressing the variations of the estimated prin-
cipal direction ﬁi’ has in the plane Py» defined above, bivariate

central nomal distribution with the covariance matrix

(2 2 - 2,172 | .

We shall introduce the quantities

(1.31) P 6/[21 =, - ujIJ
STki = 6/[2] A’i - aeka

and call them error parameters of the i-th principal direction.

Then we can write

(1.32) 6, = 5;51

=1

2
‘5Tki *

The expression
dp. d
(2.33) ( Ji) ph )
TJI

thus has chi-square distribution on two degrees of freedom. In the

plane Pi a tolerance ellipase can be constructed that will exclude

26



100 ¢ % of the least likely endpoints of the vector éi‘ The aemiaxes

of the tolerance ellipse are lying in the directions p.

Pj» Py and their
length is

4
2
(1434) Epj1 = tgTji[x‘«z;(i-b()]z

4
2
Emes = Omug [X 2 (1—«)] %

where xg,u_u) is the 100(1 - ¢ )% quantile of chi=-square distribu-
]

tion on two degrees of freedom,

We shall project the tolerance ellipse centrally on the unit
sphere and call the thus formed region on the sphere tolerance region

of the estimated principal direction ﬁi‘

1.5 CONFIDENCE INTERVALS OF PRINCIPAL SUSCEPTIBILITIES,
CONFIDENCE REGIONS OF PRINCIPAL DIRECTIONS

In practice, with the susceptibility tensor 5 unknown, we can
= when considering the variations of the principal suaceptibilities
and principal directions - start only from the aatimated susceptibi-
lity tensor g.

The estimate of the covariance matrix 62! (1.28) will be the
matrix

>

(1.35) o2W |

n

where 82 js the estimate of the dispersion 62, W is the estimate of
=

the matrix W. We can obtain this estimate ﬁ by replacing the princi-

pal susceptibilities 8y, %, e, in the matrix W by their estimates

[

N Y
“1, xa, 33.

27



2 of the dispersion ¢2 as the

2

We shall consider the estimate s
only source of the variations of the matrix s g while the variations
of i in the given approximation will not be considered. As we have
ass;med the differences between the actual principal susceptibilities
e; to be sufficiently great in comparison with the standard error &,
the inaccuracy thus arisen will be of no importance, which follows
from the character of the matrix (?2!, see (1.28).

The estimate of the dispersion-of the principal susceptibility

4 2
‘”1 then is 0.48%,

We construct the statiastic
(1.36) t= (% - @)/ bas=u/(s/8) ,

where

a = (&1 - aei)/Jo.4 6 .

The random variable u has the distribution N(O, 1). The expression s®
is independent of u and is distributed as (leg)i s Where X2 has
chi-square distribution on 9 degrees of freedom. Thus the statiatic
t has Student distribution on 9 degrees of freedom. Hence it follows
that the 100(1 - 0C)% confidence interval for the principal suscepti-

bility aei is
" A
(2.37) <ai -/ Oeds tg;(i- oC/2) , xi +/0.48 t9;(1- M/2)> ,

-;‘ L ]
where t9i (1- 0/2) is 100(1 /2)% quentile of the Student distribu

tion on 9 degrees of freedom.
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Estimatea a'l'ji of the error parameters GTji are

a/[ZI a?i - a?j[]
o[ 21 i, - &[] -

(1.38) sTji

'S
We shall introduce error angles

= tan-.i sTji

-1
Spi ® tan Bppi *

(1.39) aji

Expression

2 2
dp. ap, .
831 Sri

is snalogous to the expression (1.33). Under the above mentioned as-
2

sumption that the estimate 8“ of the dispersion 82 is the only sour-
ce of variations, the equation (1.40), using equations (1.31, 1,38),

may be arranged to

o[G0,

The expression in the brackets has again chi-square distribaotion on
two degrees of freedom and is independent of the expression s/8 , Ex-
Preasion s/é is distributed as (X2/9)* . wherexa has chi-square

dietribution on 9 degreea of freedom. Thus the expression (1.40) is
distributed as 2F, where F has F-distribution on 2 and 9 degrees of

freedom.

On the basis of this result we construct an approximate

100(1 - o¢ )% confidence ellipse for the endpoint of the vector Py-



The confidence ellipse lies in the plane 5& that passes through the
endpoint of the vector éi and is perpendicular to it. The semiaxes of
the confidence ellipse lie in the directions P;, P, and their length

a2

1s

4

(1.42) °rji = Opji (21’2,9;(1- ‘))z ’
4

®rii * *rii (2“2,9;(1--0)‘ .

where P, .. is 100(1 «~0X)% quantile of the PFP-distribution on 2 and
2'9’(1" (x)

9 degrees of freedom.

We shall project the confidence ellipse centrally on the unit
sphere and call the thus formed region on the aphere confidence re-

gion of the principal direction Py

The angles giving the semiaxes of the confidence region will be

denoted eji’ e

(1.43) .ji = tan.1 eTji

-1
Oxy = tan " Oqyg

and called confidence angles of the principal direction Py

The quantities S. Tiit eﬂl‘ji' 8pjqs ';}i’ ‘Tji’ eji (3, i =1,
2, 3; j ¥1i), that have been introduced in this and in the preceding
sections, are symmetrical in the indeces j, i. We shall accept the
convention that the indeces will always be presented in an ascending

80QUeNce, @ege €55, 053, 93¢



1.6 ANISGTROPY FACTORS

In many considerations on magnetic susceptibility of rocks we
are interested only in the character of the anisotropy, i.e., sub-
stantially, in the ratios of the principal susceptibilities, without

considering, in the given context, the orientation of the principal
directions.

The character of the anisotropy is expressed by means of the so
called anisotropy factors; they are non~dimensional quantities deri-

ved from the principal susceptibilities 1).

The following three anisotropy factors can be considered as ba-

sioc,
(1.“) Hi = ail xz. Bz = le *3 » H3 = ZI/ 33 -
Each of the factors H,, By, H3 is determined by two principal suscep-

tibilities only, any two of the factors are sufficient for a complete
description of the character of the anisotropy.

1) The anisotropy factors can be considered as an analogy Or &8 &
special case of a certain class of factors that are commonly
used in the literature on geology to characterize quantitati-
vely the fabric of the rock.
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Besides of the basic factors mentioned, a series of further factors
are known from literature, that are given by more complicated expres-
sions, We shall here consider only three of them that are most neces-

sary for the contemporary interpretation practice,

(1.45) H, = (2 + %,)/(2 *3)
]{5 = 2 21/( aez + ‘ae3)
A 2 2
Bs = xaf( “1 3) .

The estimates ﬁi (i =1, 2, essy 6) of the anisotropy factors

may be obtained when replacing the principal susceptibilities aeJ. in

the equations (1.44, 1.45) by their estimates &j' Let us suppose that
for the estimate ﬁi it holds

(1-‘6) ﬁi = Hi + dHi ™

The variations dH; will be expressed, in the first approximation, as
linear functions of the quantities ds,, so that

{1.47)

[cm1 aH, AH, aH, aH, dﬂs]'zg[dael aee, dat_.,]’.

The matrix C, as can be derived from the equations (1.44, 1.45) has
the form
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(1.48)

¢ = ] 1/ ee, - 1/3; 0 i
) i/ 23 - aez/gg
1/ 2, 0 - "1/”?5
1/(2 %) 1(225)  -(aeg+aey)/(223)
2/( s p% 225) 2w f(or ) 2y /(0 )2
R L S E VI E N S IV ) .

From the linear relation (1.47) there follows for the covariance
matrix 21_1 of the quantities dHi

2 2 '
(1.49) 52=5SV‘12,

where 31 is the covariance matrix of the quantities 4 », i.e, the up-

per diasgonal (3 x 3) submatrix of the matrix z given by the relation
(1.20).

Dispersions & 2(1-(1) of the estimates ﬁi of the anisotropy fac-

tors are equal to the diagonal elements of the covariance matrix 622,
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(2.50)

2, 2 2 4
0,46 (g + 3 + f2, 2))/%,

G3(#,)

2.4 2, 02 e .1 4
SE(H,) = 0,45 (3 + X3 +im, 0 ) %3

52(ﬁ3) = 0.4 dz(xi + ﬂ'% +3 .-elaej)/ac‘;

dz(ﬁ‘) = 0.162[@:1 + u2)2+ e 0ty +®) + ;gg]/gg

Gz(ﬁs) = 0.4 62[6ar§ R ENC PR NN a¢3)2] /
/( «2 + x3)4

28y - 2 |2 4.4 2 .2 2 ,2 2 22
] (HG) = 0.46 ["2/(88123)][a122 + 4&123 + aezae3 +

Estimates a(ﬁi) of the standard errors o (ﬁi) of the anisotro-
py factors may be obtained from (1.50) by replacing the quantities 081
and 6 by their estimates &i and 8, respectively. The relationa thus
obtained are rather complicated. We shall, therefore,start from the
fact that, in practical computation, the estimates of principal seus-
ceptidbilities are normalized, i.e. that (él + 932 + &3)/3 =z 1, and
that their values differ from one only very little. Under these as-

sumptions simplified approximate relations can be derived.
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(1.51-) 8(ﬁ1) = 3(3 + &1 - 3 &2)

&

a(3 + éa

i
LN ]
R>

(@8]

L -

a(3 + éi

I
[ 98]
b}

L)
L
Lo Y

>

A

x2~5oe3+4.5)]5

+

s(fiy) = s[o.50 %,
A ~ A 1
8(H5) = 8[0.5( &1 -2, - 2'383 + 4.5)] k3

s[9+86?2 - 7( 9%1 + &3)]; .

Let us recsll that the considerations in this section are bound
to the fulfilment of the basic assumptions stated in the section 1l,.4.
If these assumptions are not fulfilled to a sufficient extent, then
the estimates of the anisotropy factors are not unbiased. If, for in-
stance, the inequality ey = ﬂ2>6 is not satisfied in a suffici-
ent measure it will cause, in addition to other effecta, that the es-
timate ﬁi will show a systematic bias towards higher values, cf. sec-~

tion 2.2,

1.7 TEST FOR ANISOTROPY

The test for anisotropy serves to verify whether the differen-
ces between the principal susceptibilities determined by measurement
compared to measuring errors are great enough for us to be entitled
to conaider the specimen as anisotropic. For anisotropy testing the
P-teat ias used that is in [7] derived from the least square method on

the basis of analysis of varience [6].
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We have succeeded to construct the test in question in a more

simple and a more objective way, that will be now quoted here.

We shall consider as the null hypothesis H, the argument that
the specimen is isotropic. The argument about the specimen being an-
isotropic, whether rotationally or triaxially, will represent the al-

ternative hypothesis H,.

Estimate s of the dispersion $2 ig independent of the estima-
tea ii of the components of the susceptibility tensor (i = 1, 2, +e.,

6)+ The hypothesis H, being valid, it is possible to obtain a new es-

timate sf of the dispersion ‘52, that is independent of sz.

For this purpose we shall introduce auxiliary variables by means

of the relation

(1.52) 1, = k

i + B (i=1,2,3,

i

where 3 is an auxiliary random variable with the distribution N(0, 0.1),

independent of k. (i = 1, 2, eesy 6) and 82

i « Further, let

(1.53) ® = (i +k,+ £)/3

designate, as until now, the mean susceptibility, and let

L

(1.54) 1=, +1,+1)73.

From the covariance matrix 652! (1.20) it follows {without regard to

A &

the validity of the hypothesis H ) that the quantities 1,, 1,, 15, k,,
A

kS’ §6 are mutually independent, the dispersion of the first three

being 0.562 and the digpersion of the remsining being 0.2562.



The zero hypotheais Ho may also be formulated like this

(1.55) E(ii) = E(iz) = E(iB) = E(1)
E(k,) = B(k;) =B(g) =0,
If H, holds, then the random variables
3 Lal Fa)
(1+56) A = (1/0,56%) ; d, - 1% -

= (170,56 %) (i + 1} + 15 - 327,

_ 2, 12,42 4 2
B = (1/0.256 ) (k¢ + k5 + ke)

have chi-square distribution on 2 or 3 degrees of freedom, respecti-
vely and are mutually independent. The sought estimate si of the dis-

persion 62 is thus given by the relation
(1.57) = (A+8)8Yys5

Expression A + B evidently has chi-square distribution on 5 degrees

of freedom.,

The F-statistic for anisotropy testing

(1.58)

= (a2/9%) = Ry (A2 52 22 o462 L 82 82 82
F = (si/3%) = (2/58%) (ky + k5 + k5 = 3%° + 2k, + 2k + 2k¢)

then has F-distribution on 5 and ¢ degrees of freedom. It is evident
that in the case of validity of the Hi hypothesis, the estimste sf
28 well as the F-gtatistic have a tendency to take on values hig=-

her than in the case of validity of the hypothesis Ho‘ We shall re-
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ject the hypothesis H, (about the specimen being isotropic) in favour
of the alternative hypothesis H1 (about the specimen being anisotropic)

on the significance level oc, if

(.59 F 275,05 (1-00)

where the expression on the right side of the inequality is (1 - o )%

quantile of the F-distribution on % and 9 degrees of freedom.

In the table 1.1 values of these gquantiles for several levels of

significance are given [5].

Table 1.1

°‘ 1 - F5,9;(1-06¢)

(%] (%]

10 90 2.6106
5 95 3.4817
2.5 97.5 4.4844
1 99 6.0569

The relation (1.58) for F-statistic is invariant with respect to
the orthonormal transformation of coordinates, which is the conseq-
uence of the choice of the rotatable measuring design. This property
can also be proved by means of invariants of quadratic forms, see e.
g. [1]. There is some advantage in expressing F-statistic in a coor-
dinate system determined by the vectors of principal directions. Thus

we get a simpler relation
(1.60) F=(2/56%) (23 + 23+ 22 322,

which may be arranged into the fomm



3
(1.61) F = (2/58%) 2 (e, - £)2 |

o 1
Let us notice that the construction of the described F-teat ia

quite exact, no simplifying assumption being used.

There is another meaning to the F-statistic. A sufficiently high
value of the F-statistic is a necessary condition for the simplifying
assunmption formulated at the beginning of the section 1.4 to be ful-
filled, It is neceasary to emphasize that the high value of the F-sta-
tistic is not a sufficient condition as it does not exclude the case
of rotational anisotropy, that will be discussed in greater detail in

the next chapter,

2. TNO-DIMENSIONAL PROBLEM

2.1 TRANSITION TO TWO-DIMENSIONAL PROBLEM

In practical applications we often come across a case of an ap-
proximately rotational anisotropy, where either the principal suscep=-
tibility #4 Or a4 significantly differ from the two remaining prin-

¢ipal susceptibilities, i.e. there holds either

(2.1) ®, - *3>>“1 - &y
or
(2.2) X, - X >y = oy .
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This type of anisotropy is usual in quite a series of rock types. In
many sediments, for example, the principal susceptibility correspon-
ding to the direction perpendicular to S-planes differ significantly

from the other principal susceptidbilities which almoat coincide.
For the sake of simplicity we shall limit ourselves only to the

case fulfilling (2.1), as the second case may be discussed quite ana-
logically.

We shall not, for the sake of a clear record, in the quantities
introduced in thia chapter denote that they concerne the case fulfil-
ling (2.1). There will be, however, formal reasons for making an ex-
ception in the denotation of the confidence angles of the principal

directions and of the statistics for anisotropy testing.

In the meantime, let us suppose that the conditions for the va-
lidity for Hext'’s statistics are fulfilled, i.e. that in the chosen

case

According to the considerations in section 1.4 we shall come to
the conclusion that the tolerance regions of the principal directions
Ei’ §2 are very elongated, that their longer axes are lying in the
plane (py, pp) and,further, that the tolerance region of the §3 direc-
tion is substancially smaller its form being approximately circular.
With regard to the relatively small variations of the estimated prin-
cipal direction 23 there is some sense in simplifying the considera-
tion by neglecting the variations of the direction §3. This narrows
the three-dimensional problem of the statistic estimation of the sus-
ceptibility tensor to a two-dimensional problem in the (21 22) plane;
within the limits of the simplification used, this plane coincides
with the (p, B,) plane.
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Let us now consider what happens when the assumption (2.,1) is
fulfilled, but the assumption (2.3) is not fulfilled to a sufficient
extent, It is evident from observation, and it is relatively asimple
to prove, that, even in this case, the direction EJ will show small
variations, Further, it may be expected that the tolerance regions of
the ﬁz’ §2 directions will be still more elongated. At the eame time
it is clear, that for a limit case of a complete rotational anisotro-

py (for #, = “2) the tolerance regions of the §1, §2 directions

will coincide and form on the unit sphere a narrow girdle around the
great circle determined by the plane (§1 22). The variations of the
directions Py, P, will thus be still greater than in the case when
the condition (2.3) is fulfilled; it is all the more possible to neg-
lect the variations of the direction §3 and pass to the two-dimensio-

nal task as shown above,

The aim of this chapter is to discuss the two-dimensional problem
mentioned, and to do so0 - with a small exception - without the limi-
ting condition (2.3). The conasiderations of thia chapter surpase the
scope of the problems discussed in [7] and represent an extension of
the theory of anisotropy measurement into a region that is of consi-

derable importance for the practice.

We shall now try to describe the transition to the two~dimensio-
nal problem from the point of view of the tensor notation, We shall
just start from the knowledge that a tensor may be "perpendicularly

projected"™ into a plane, similarly to a vector.

Let k denote the susceptibility tensor estimated from the rota-
=
table design of 15 measuring directions. Let ita matrix expression

in the system {P] determined by the principal directions B1s P2s P3
be
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(2.4) ?’ = | %, +dk, dk, dkg
B, s,k kg
akg a, kg |

We shall project the tensor g into the plane (21 22). In this way we
shall obtain the two-dimensional tensor 2‘ describing the properties
of the susceptibility in the plane mentighed. Tensor g will be, in the
coordinate system determined by the directions Py and-gz expressed by

a square matrix 1)

(2.5)

s>
]

diq.dk dk4

or, alternatively, by a column matrix

(2.6)

1=

]

The introduction of the tensor ﬁ denotes the transition to a twoe=

-dipenaional case in the above mentioned asense. The plane (21 P,), in
which the tensor is lying, is namely identified with the plane (H; B,),

while the variations of the direction §3 are thus neglected.

#e shall express the variations of tensor g by the matrix
L
(2.7 dK = [dkl dk, dk4] .

1) The system determined by the directions Pys P is here considered
as fundamental, That is why the matrices expressing the suscepti-
bility tensor are not .indexed in this aystem.
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The alements of this matrix have central normal distribution with the

covariance matrix

(2.8) 8%v, = 6%[ o4 -0.1
-0.1 0.4
0.25 | ,

as follows from the normal distribution of the elements of the matrix

: “;p and from the covariance matrix 62‘! (1.20).

The estimated principal susceptibilities 51 &2 and the prin~
4

cipal directions §1' P, satisfy the equation

& _ A A
(2.9) KBs = #;5Dp5

the estimated principal direction Bi being expressed by the column

matrix

A A A '
(2.10) Py = [Pn Pzi] .

2.2 VARIATIONS OF PRINCIPAL SUSCEPTIBILITIES

Let us seek the estimate 31. 3?2 of the principal susceptibi-
lities in the two-dimensional case. By solving the relation (2.9) we

get for the gusceptibilities a?i, 3?2 the seaalar equation

(2.11)
®2 - R(at +aky> k) + (Rp+dly) (dpedky) ~ A2 = 0,

the roots of which are
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A A

(2.12) 21112 = ;(;?1'* “é + dki + dk2 ¥ r) ’
where

1
(2.13) ; = &1 - dz = [(r + 6V)2 + (8')2J 2 ,

where

= o€ - 2 v = (dkl-dkz)/d . w=2dk,/G .

2’
Random variables v and w are independent and their distribution
is N(0, 1), that immediatly follows from the covariance matrix (52!2,

given in(2.8).

Thus the difference of the estimated principal susceptibilities
T has the same distribution as the length of the radius vector of a
point in a plane, the cartesian coordinates (r + &v), (&w) of which
are independent, their diatribution being N{r, 0’2) and N(OC, 62),
respectively. So the distribution of the random variable £ is the
non-central Rayleigh distribution with the excentricity parameter r.
The random variable

1

(2.14) b=t/ = [0+ w2+ ]
then has normalized non-central Rayleigh distribution with the ex-

centricity parameter Q0 = r#f and with the probability density

(2.15) 200) = f exp[-(82+ 022 1.8 0)
whers Io(.) denotes the Bessel function of the zero order and ima-

ginary argument, see [3].
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Flg. 2. 1 Dependence of 100 & % quantiles of random varlable@ with normalized non-
-central Raylelgh distribution on the excentricity parameter p ; dependence of the
quantiles of random varlable §*w|th N (p , 1) distribution on the parameterp.
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In figure 2.1 the dependence of 100 % quantiles of the random
variable é‘ on the excentricity parameter p (eo¢ =5, 10, 50, 90 and

1). For the asake of better illustration also the ana-

95 %) is shown
logous dependence of the quantiles of the random variable EK with

the distribution N(P s1) on p is shown.,

From the figure it can be aeen that the difference of the es-
timated principal susceptibilities T is systematically greater than
that of the real principal susceptibilities r. Thus the measuring er-
rors apparently increase the degree of anisotropy. Nevertheless,this
effect shows only if the anisotropy is small with regard to the stan-~
dard error of measurement when the condition (2.3) is not fulfilled

to a sufficient extent, i.e. for small values @ , say for p < 3.

2.3 CONFIDENCE INTERVAL OF THE DIFFERENCE OF PRINCIPAL
SUSCEPTIBILITIES

Fig. 2.1. may serve for the construction of confidence inter-
vals for o and r on the basis of estimates 5 or T. As for the stan-
dard error meassurement G its estimate s is substituted, the obtained

confidence intervals are of an approximate character only.

For illustration we shall give two examples :
1) By measuring it was found Q0 & t/8 = 2.4. The approximate

80 % confidence interval for r will be given by the inequality

078 S r S 3.58 .

1) The curves have been constructed on the basis of the table given

in [4].
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2) By measuring it waa found 3 = /s = 1.4, In this case it
has some senge to construct only a one-sided confidence interval. The
approximate one-sided 90% confidence interval will be given by the in-

equality

r 52'45 .
2.4 VARIATIONS OF PRINCIPAL DIRECTIONS

The variations of the estimasted principal direction ﬁl in the

plane (21 22) will be judged according to the angle
- -1 N A
(2.16) ® = tan (p21/p11) ’

that is formed by this direction and the actual direction Pqs aee fig.
2.2, (It is evident that the angle & simultaneously gives the magni-

tude of variations of the estimated principal direction §2')

In the matrix equation (2.9) we shall replace the general index
i by the index 1. From the matrix equation we shall obtain two ordins-

ry equations from which we shall select the following
(2.17) dk, B - SRV

For 5}1 we shall substitute according to (2.12); after arrangements
by using (2.13) we get

(2.18)  Swpyy - fr+ 8w - [x+ 6m2as (6w)2]5} P =o0.
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From (2.16; 2.18) we shall get for the sought angle

-1 z
(2.19) @ = tan 2]
1+ 7(+ 2%
where
é
(2.20) z =~
(2.22) 7 = eign (r + 8v) ,

The last equation may be alsc written in the form
(2.21a) 7 = gign (”1 + dk1 - Qz - dkz) .

The random variables v, w are, as already stated, independent and their

distribution is N(O, 1).

Equation (2.19) can further be arranged,

(2.22) 0 = I tan 4 »

1 and for

where for 7 = 1 the principal branch of the function tan”
N = =1 the subeidiary branches illustrated in fig. 2.3 should be ta-
ken.

It can be seen that the angle w may deviate from the interval
(-X/4, X/4). This phenomenon occurs when 7 = -1, i.e., when
(o0, +ak, )<< (e, + dky)s It is interesting that the occurrence of
the phenomenon mentioned is decided only by the diagonal elements of

A
the matrix K.
=

Using the earlier defined error parameter éTji' see (1,31), the

following expression can be derived for the quantities 1z, 7
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Fig. 2. 2 Varlations of the principal directions of susceptibllity
in the two-dimensional case,

. %

—’/

— — m— p— ——

&,T % n =1

Fig. 2.3 Functlon w= 1 tan'1 Z.

2
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28 . aW
(2.23) z = T12 ’
h | +2b‘n2v

(2.24) ’z = ai.gn (1 + 2 6T127) .

We shall further seek the angle tolerance interval {-¢', € ), that

will exclude 100X % of the least likely positions of the principal
direction §1. A general construction of this interval would be rather
complicated, which is why we are discussing only certain significant

cases.
A) We shall first suppoae that the error parameter 61‘12 < 1.

Thenit approximately holds

(2.25) Q = dmz" ,
80 that
(2.26) g = grn Uy ~oc/2) 0

where Ueyoox/2) is 100(1 - 0¢/2)% quantile of the distribution N(O, 1).

B) Let G’mz—-boo. In this case the random variable & has uni-
form distribution on the interval (-X/2, X/2), so that

(2.27) € = (x/2) (1 - 0¢/2) ,

C) Finally, let us seek such a value of the error parameter
@ py2¢ for which € = X/4, According to (2.22) the angle & will de-
viate from the interval {-X/4, &/4), if and only if 7 = =1. Accor-
ding to (2.24) the probability of the phenomeunon 7 = =1 is the same
as that of the random variable with N(O, 1) distribution exceeding the
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value 1/2‘6&12. Hence we shall immediately derive that the angle inter-
val {-X/4, X/4) excludes 100 % of the least likely positions of the

principal direction ]’51, if the value of the error parameter is

(2.28) Spyz = /200y o |

where u is 100(1 - X)% quantile of N(0O, 1) distribution.
(1-0¢)

2.5 CONFIDENCE INTERVALS OF THE PRINCIPAL DIRECTION FOR
SMALL MEASURING ERRORS

Let us seek the angle confidence intervasl for the actual principal
direction Py in the considered two-dimensional case under the condition
that the assumptions of the Hext approximation are fulfilled,which means

that the inequality (2.3) is fulfilled.

Under the condition stated the random variable & , characterizing
the variations of the estimated direction ﬁl' is given by the equaticu
(2.25). Let us divide this equation by the estimate of the error para-

meter spy, given by (1.38),

G/} e, - @t
(2.29) Q@ =w : 7—?1 .

Random variable w has distribution N(0, 1) and is independent of
the expreassion 8/6 . This expression is distributed as (X2/9);' s where
L 2 has chi-square distribution on 9 degrees of freedom., Within the ap-
proximation considered, the equality #y - 9y = -'31 - 892 is fulfilled.
Hence it follows that the random variable a)_/e.nz has Student distribu-

tion on 9 degrees of freedom. As a consequence, the 100(1 - o' }%
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angle confidence interval for the actual directiopn P; has in angular
measure the half width

Yo
(2.30) 012 = 8p12 %g.(1 -~ a2)

and is symmetrically laid round the estimated principal direction 51.
The angle °i2 will be called confidence angle for the cosidered two-

=dimensional case.

The confidence angle e,, for the three-dimensional case is, in

the approximation considered, given by the equation

1
(2,31) e12 = o2 [2F2,9;(1 -o))?,

that arises by the linearization of the equation (1.43).

If the level £ for the confidence angle P is given, it is pos-
aible, on the basis of the equations (2.30, 2.31), to find the level
o for the confidence angle 9;2 80 a8 %0 make eaa = e,,. For exemple
for X =10 or 5 %, o= 4 or 2 %, respectively. This consideration
shows a further connection between the two-dimensional and three-dimen-

sional problem.

2.6 TEST FOR ANISOTROPY IN TWO-DIMENSIONAL CASE

The test for anisotropy discussed in section 1.7 allows to deci-
de whether we are entitled, on the basis of +the results of measure-
ment, to consider the specimen as anisotropic. It does not, however,
permit to distinguish the type of anisotropy, i.e. whether it is the

case of the rotational or triaxial anisotropy.
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But if the specimen has either a significant minimal susceptibi-
lity a4 or maximal susceptibility x, , see section 2.1, the type of
anisotropy may be judged on the strength of the test for anisotropy in
the plane (21, 22) or (122, 23), respectively. We shall limit ourselves
to the first case only; the test dealt with in the second case is ana-

logous.

The null hypothesis H, will be the statement the the specimen ia
rotationally anisotropic around the axis P3» i,e. that s, = 912. The
alternative hypothesis Hy will consist in the statement that the ape-

cimen is triaxially anisotropic, i.e. that * & s,

If H  holds, the random variable é-s ( 9'2'1 - ﬁz)/o’ has norma-
lized central Rayleigh distribution, see section 2.2, so that 52 has
chi-square distribution on 2 degrees of freedom. The random variable
(a/& )2 (without regard to the validity of Ho) is independent of é\
and it is distributed as X 2/9, where the distribution of X2 is chi-

-gquare on 9 degrees of freedom.

Statistic
A A

therefore has, in the case of validity of H,» F=distribution on 2 and

9 degrees of freedom.

We shall reject the null hypothesis Ho of the rotational anisotro-
PY in favour of the alternative hypothesies H1 of the triaxial anisotro-

py on the significence level o<, if

where F2,9;(1-0c) is (1 - X )% quantile of the F-distribution on 2 and

9 degrees of freedom.
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Table 2.1 gives the values of these quantile for several significance

levels [5].

Tab,. 201
o 1 - F2,05(1 - )
(2] (%]
10 90 3.0065
5 95 4.2565
2'5 9705 507147
1 99 8.0215

There is still another way of performing this test, namely by
using confidence angles. From the equations (2.32, 1.38, 1.42, 1.43)
it may be derived for the statistic F,,

F2,9;(1-02)
2

(2.3" Flz =

where ®12;(1~ 0c) is (1- CX)% confidence angle for the three-dimensio-

nal case.

From the equations (2,33, 2.34) results the following criterion,

equivalent to the above mentioned criterion : the hypothesis H, will

be rejected in favour of Hy on the significance level o< if

This result is too surprisingly simple and very useful. As far as the
confidence angle e,, for the considered value O< is known, it is suffi~

cient to compare it eimply with the constant angle 26.5°.
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Hext [7] suggests a test for coincidence of two eigenvalues
(principal susceptibilities) that should fulfil the same function as
the test described in this section. However, the construction of hia
teat is not correct. The error was caused by the fact that the propo-
sed testing statistic has the assumed Student distribution only in the
case when the difference of any two eigenvalues (principal susceptibi-
lities) is sufficiently great in comparison with the measuring errors,
sge the fundamental assumption stated in section 1.4. Thus it ia not
poesible to use such a statistic for testing the coincidence of two

eigenvalues,
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3. EXPRESSING SUSCEPTIBILITY PARAMETERS

IN VARIOUS COORDINATE SYSTEMS

Until now we have expressed susceptibility parameters in the co=~
ordinate system of the specimen or, in some cases, in the coordinate
system of principal directions. To be able to compare mutually various
specimens (e.g. specimens taken from the same geological body) it is
necessary to introduce s suitable common coordinate system, which can
be either the geographic or the tectonlc coordinate system. More de-
tailed characteristics of the coordinate system of the apecimen, the

geographic and tectonic systems, are given in section 3.2.

To the susceptibility parameters that will nocesiarily have to
be transformed between the systems atated belong the susceptibility
tensor and the vectors of principal directions. The principal suscep-
tibilities and the mean susceptibility are scalar quantities and thus

they are not bound to any system,

The transformations equationa in this chapter are written for the
actual (correct) parameter vaslues. In a practical situation, however,

we substitute estimated {(measured) values.

This indicates that the strict distinguishing between the actual
and estimated values, maintained until now, becomes redundant in this
phase, This is the reason why - as far as nothing prevents it - the es-
timated values will be treated ms if they were actual values, This will
also show in nomenclature, as well as in symbolice. Thus, e.g., we
shall only write "susceptibility tensor E' instead of “eastimated
susceptibility tenaor'g, and others like that. Such a simplified

way of expressing is, after all, quite usual in applications of the
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theory of measurement,

The sbove note concerns, to a reasonable extent, also the follo-

ing chapter 4,

3.1 ORTHONORMAL TRANSFORMATION OF VECTOR AND TENSOR

In this section we shall draw the attention to the fundamental
equations for the transformation of components of the vector and ten=
80r between two cartesian coordinate systems. Notea on the symbolics

used were given in the introduction.
Let us consider a coordinate system {Y]} with the axes y,, ¥,, Y3

and a syatem {z] with the axes Zyy 22y Zys The transformation matrix
of the system {I] to the system {Z} will be denoted QZY. It ie deter-

mined by the equation

(3.1) 'rzI =T cos (21, yl) cos (zl, yz) cos (zi’ y3)-

cos (25, ¥q) cos (z5, y,) cos (z,, y3)

cos (23, yy) cos (z3, ¥o) cos (z3, y3)J .

Let h be a certain vector, that is in {I} and in {Z} sxpreased

Y

by a column matrix h” or Qz, respectively. Then it holds

X

(3.2) nt .

he = 72

Let k be a certain tensor of the 2nd order that is in {Y} and {z}

expressed by a square matrix kY or kz, regpectively. Then it holds
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(3.3) K2 = 72t (12

The transformation matrix ?Z! of the system {Y]} to the system
{2} is orthonormal under the ch;sen assumptions, For the matrix
EIZ = (1%Z)~1 that is the transformation matrix of {E} to {E] y it
holds

(3.‘) EYZ = (EZY)‘ .

3.2 CHARACTERISTIC OF THE USED COORDINATE SYSTEMS

The coordinate system of the specimen is a system in which the
anisotropy measurement, as well as the fundamental nugerical proces-
sing are carried out. It is the system that is firmly bound to the
specimen and usually it is marked on its surface in a suitable way,
The system of the specimen will be denoted {X} y its axes Xgy Xp» Xge
Though, in principle, the system of the specimen may be chosen in an
arbitrary way, a certain usage is maintained. In cubic specimens that
are generally used for anisotropy measurement, the system of the spe-
cimen is chosen in such a way thot its axes coincide with the edge of
the specimen, see fig, 1.2. A further principle will be given below,

in connection,with the definition of the angles of sampling.

The coordinate aystem of the specimen is considered as "fundam-
ental” in the sense of the note on the symbolics in the introductiom;
the matrices expressing vectors and tensors are not indexed in this
system.

The geographic system of coordinates will be denoted Y ,



Fig. 3. 1
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Orlentation of sampling, I.e, orientation of the

coordinate system of the specimen {X 1 with

respect to the geographic coordinate system{Y |},
expressed by the sampling angles ¢, y.
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its axes Yys Y1 ¥3e Axes Yir ¥p lie in the horizontal plane, the first
of them aiming to the north, the second to the eaast. The axis ¥3 aims

vertically downwarda.

The anisotropy of magnetic susceptibility is measured on oriented
specimens. That means that the orientation of the coordinate aystem of
the specimen [X] with regard to the geographical system [I ]is known,
The orientation is expressed by the so called sampling angles y?and Y
as illustrated in fig. 3.1. At the same time p< (00, 3600), Y€ (00,
1800). The coordinate system of specimen is chosen in such a way that
in the original position of the specimen (in situ) the Xy axia is ho-
rizontal. That is why two angles are sufficient for the determination
of orientation. Concrete sampling procedure of specimen can be rather

varied, but their description is not subject of this work.

The tectonic system expresses, roughly speaking, three tectonica-
1lly significant, mutually perpendicular direction in the rock at the
place of sampling. In geology it is customary to denote the axes of the
tectonic system as a, b, c. The (& b) plane is usually the foliation
plane, the b axis lies in the lineation direction, the ¢ axis is
perpendicular to the (a b) plane. (This characteristic of the tectonic
aystem is exclusively informative, for a more exact explanation should

be consulted in professional literature, see e.g. [16].)

Not wanting to break the homogeneity of the symbolics, we shall

denote the tectonic system as [Z ], its axes as z.

is where zy = a,

Z, = b, zy = C. As the tectonic system is bound to the rock in the
place of sampling, it is also bound to the specimen taken. In spite of
that, its orientation is usuelly considered with regard to the geograp-~
hic system, not to the system of the specimen, and expressed by a triad
of angles A y Moy ¥ as illustrated in fig. 3.2. At the same time
Ae (0°, 360%, me (0°, 180°), ve (0°, 180°).
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Fig. 3.2
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In transformations we shall also consider the coordinate system
determined by the principal directions P33y Pa» P3» and denote it {P} R
Whereas the coordinate systems of the specimen, the geographic and the
tectonic one, are altogether righthanded, the coordinate system deter-

mined by principal directions need not be righthanded.

3.3 TRANSFORMATION RELATIONS FOR SUSCEPTIBILITY PARAMETERS

A survey of relations between suaceptibility parameters expres-

sed in various coordinate systems can be found in fig. 3.3.

The matrix EP expreasing the susceptibility tensor in the system

of principal directions has the following simple form

(3.5) K =, 0o o0
0 ¢, O
o o wl .,

The matrix p coptains in its columns directional cosines of the

principal directions in the system of specimen,

=[P B2 B3>

gee also (1.6, 1.7). This matrix can obviously be understood as a
transformation matrix of the system of principal directions {P} to the
aystem of specimen {X} » The form and meaning of the matrices gy and
Ez,is analogouas,

=

The matrix gyx

is the transformation matrix of the system of the
specimen {x} to the geographic system {r} « On the basis of the ear-

lier stated definition of the sampling angles % , W it ia, according
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Fig. 3.3 Schematic diagram of the relatlons between the susceptibllity parameters in dif-
ferent coordinate systems. (1) Coordinate system symbol, (2) matrix representing
the susceptibility tensor, (3) matrix expressing the principal directions, (4)

transformation matrix.
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to (3.1), posaible to derive for the matrix TIx

(3.6) gn‘ = cos ¢ | =siny cosy | siny siny
sin ¢ cosy cosy | -cosy siny
0 siny cos
A

Similarly, the ‘£ matrix is the transformation matrix of the geo-~
graphic system {Y} to the tectonic system fz} +» On the basis of the

definition of the angles A\, M ¥V we can, according to (3.1), deri-

ve for it
(3.7) _'I._‘ZY = cosAsinV + sin\ sinv -
= -siny coa ¥y
ainA cosH cos Vv cos Rcoay cos ¥
cosAcosVy - sinANcoaV +
ainf.( siny
sin?\coa(..l siny cos?\cosy ain¥
sin\ ainl.( -coa A sinp cosld

3.4 ALGORITHM OF TRANSFORMATIONS OF SUSCEPTIBILITY PARAMETERS

In this asection we shall describe the procedure by which sus-
ceptibility parameters can be expressed in the used coordinate sys—

téma, and which is used in the computing program.

We agsume that the matrices k, p and l_:P have already been de-~
termined. Further computation can then be divided into ten steps that
are given below. However, let us, in the meantime, not consider those

marked by an asterisk; their meaning will be explained later,
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Y1) Transformation matrix !YX according to (3.6) is computed

t2) g’f - £
n)* .9
Y4) EI p’ g (pt?

Z1) Transformation matrix TZY according to (3.7) is computed
=

22) Bz - SZY gY
23 gl 9p)
Z4) EZ = gZ gP (ng

In the point X2) tensor 5 is computed although it has been compu-
ted earlier in a different way. The new computation serves to check the
correctness and numerical accuracy of the principal directions and
principal susceptibilities found. Transformation equations in the steps
12) and Z2) immediately follow from (3.2); one must only realize that

it is a matter of a simultaneous transformation of a triad of vectors,

It now remains to explain the stepa X1), I3), and Z3), that are

marked by an asterisk,.

Principal susceptibility directions are - strictly speaking =
determined by non-oriented straightlines. Hence it follows that the
sanse of the véctora P3r P21 B3 is not defined a priori. We shall get
it more or less accidentally according to the numerical method wused,
and it is arranged subsequently according to certain additional re-

quirements.

Let us first notice the situation in the specimen system. We

claim the vectors Pys Pas Py to form, after an arrangement, with the
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positive directions of the axis x; engles from the interval {0°,
90°) « This is how all the endpoints of these vectors get on the he-
misphere 53 whose pole is defined by the positive diiection of the
axis Xqe A8 we imagine that the axis Xq aims vertically downwards, we

speak about 83 as about the "lower" hemisphere.

The required arrangement will be formally written as follows

(3.8) Pj¢— Dy sign (pﬁ) .

The corresponding arrangement of the matrix p then is

(3.9) p < [Py sien(pyy)  p, sign(py) py sien(pyy) |
that will be sheortened to

(3.10) p = D(p) .

The arranged matrix R has altogether non-negative elements in its third
row. It is not difficult to show, that this arrangement will not inter-
fere with the correctness of the transformation equation in the step

X2), neither with the correctness of further transformations.

This explesina the meaning of the step X1). Also in the geographic
and tectonic systems analogous demands are made on the vectors of prin=-

cipal directiona. That is why steps Y3) and Z3) are inserted.

3.5 SPHERICAL COORDINATES, LAMBERT PROJECTION

For interpretation purposes the vectors of principal directions
(sometimes also other vectors) are expressed in spherical coordinates

related either to the system of specimen, or to the geographic or tec-
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tonic system. We shall limit ourselves only to the system of specimen,

in the remaining systems the situation ia analogous.

As the vectors of principal directiona are unit vectors, only

two coordinates may be considered - declination and inclination. The

=J
By declination D‘j of the direction Ej is understood the angle between
the positive direction of the axis Xy and the vector g?'measured in

projection of the vector p. to the plane (x1 xz), will be denoted E?'

the positive sense of revolution. By inclination Ij of the direction
in question we mean theangle that is formed by P; and the plane (Jr.1
xz); generally, Ij'€ (-90%, +90°> . Nevertheless, we shall assume that
the sense of the p.vector was chosen in the way stated in the prece-

-
ding section., Then the range of the inclination narrows, Ijﬁ (0°,90°) .

Declination and inclination serve to represent, by means of a
suitable projection, principal directions in the plane., The most fre-

quently used Lambert equal-area projection should be mentioned here,

Lambert projecti on maps the unit hemisphere onto a cirele of the
radius V2, Practical reasons will make us modify the acale factor so
that the circle will have a unit radius. We shall concretely consider
the projection of the "lower® hemisphere, i.e. the hemisphere whose
pole is defined by the positive direction of the Xq axis, see also
section 3.4. The pole will de projected as the centre of the circle
and will represent the origin of polar-coordinatea in the plane. The
endpoint of the vector Ej will be projected as a point whose polar co-

. is given by the

ordinates will be Rj and D;; the radial coordinate RJ

J
equation

. = - i . 1‘
(3.11) RJ (1 ain IJ) .

Generally, nets of Lambert projection are used, and the directi-
on conaidered ia plotted on the basis of declination Dj and inclina-
tion Id' It is, however, of greater advantage to compute the radial

67



coordinate Rj and plot D.i and Rj. In that case, no net is necessary,
greater accuracy is achieved, and there ia no difficulty in changing
the scale of projection. That is why the determination of the radial
coordinate of Lambert projection was included into the computing pro-

gram.



4. PROGRAM ANISO 10

A computing program has been developed to make it easy to apply
theoretical knowledge stated in the preceding chapters to the practi-
cal problems of anisotropy investigation. The program is called ANISQ 10
and is written in FORTRAN IV language, It processes the data measured by
the bridge set KAPPABRIDGE KLY 1. There would be, nevertheless, no dif-
ficulty in adapting the program for esnother instrument based on s simi-
lar principle.

From a system of 15 directional susceptibilities measured in a ro-
tatable system of directions, the program computes the components of the
susceptibility tensor, principel susceptibilities and principal direc-
tions, anisotropy factors, statistical estimates of accuracy of the re-
sults obtained, and statistics for anisotropy testing. Tensor components
and principal directions can be expressed in three coordinate aystems,
namely in the system of specimen, geographic system and tectonic system.
In principle, the computation proceeds according to the equations given
in chapter 1 to 3. The determination of the principal susceptibilities
and principal directions, i.e. the determmination of eigenvalues and ei-
genvectors of the matrix expressing susceptibility tensor, is the most
difficult numerical task. This task is solved by the iterative method
of Jacobi [2]. The algorithm was taken over, after some slight modifi-
cations, from source [9], where it is described in the ALGOL language.
The algorithm is highly effective; a quick convergence of the process
and the orthogonality of the principal directions found are ensured,even

in difficult cases, when principal susceptibilities almost coincide.
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The results are printed on a line printer (LP). As far as requi-
red, the most important results are output on punch cards. In one run
the program can successively process results of measurements on an are
bitrary number of specimens. The correctness of the input data deck ig

checked to a certain extent, as will be explained in section 4.2.

The output on the cards was introduced to make it possible later
to form groups of susceptibility tensors and process them statistical-
ly. The fundamental significance of such an extension of the anisotro-

py study certainly need not be emphasized.

In this chapter fundemental informations about the ANISO 10 pro-

gram, important from the view of its practical use, will be given.
To facilitate the orientation in the program listing, names in

brackets are given in the description of I/0 data in sections 4.1. and
4,2, by which the corresponding variables are designated in the pro-
gram.

The listing cfthe ANISO 10 program is not a part of this work;

it can be obtained from Geofyzika, n.p.

4.1 INPUT DATA

4,1.1 Introductory notes

Until now we have assumed to obtain by measuring a system of di-
rectional susceptibilities ED'i (i =1, 2, ..., 15). But the device
KLY 1 does not directly give the directional susceptibilities; its da-
ta depend not only on the directional susceptibility of the specimen,
but also on other factors, especially on the volume of the specimen
and of the susceptibility of the specimen holder. ¥hen measuring in

the lowest ranges, it is also the temperature drift of the parameters
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of the measuring coils that influences the data of the device.The prac-
tical situation is such that, after a simple processing of the primary
data, we get a system of quantities gli) (i=1,2, .v.p 15), which
are essentially the readings of the principal measuring potenciometer

corrected, if necessary, for the temperature drift 1).

From the quantities B(l) the directional susceptibilities can be
computed according to the equation
% - (i)
(4.1) %, = 8P o I CvoL »
where K is the range factor of the respective measuring range, t’H ia
the correction for the susceptibility of the holder, Cyor the correc-
tion for specimen volume 2). The correction CVOL is given by the rela-

tion

where V. is the nominal specimen volume, for which the device has been

f
calibrated (8 cm3), V the actual volume of the specimen.

1) The description of the measuring process proper and of the pre-
liminary processing data is not the subject of this work and ia
stated in the instruction manual [14].

) In the instruction manual [14] - with regard to its bearing -
a more extensive terminology is used. The expression given on
the right side of the equation (4.1) in paranthesis is called
there directional total susceptibility of the specimen, similar-
ly the quantity I}H is called total susceptibility of the
holder.
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4.1.2 Survey of input data, form

Now we can already present a complete specification of the in
put data; it will be suitable to do so in connection with the form for
measurement recording., Examples of filled up forms are shown in figs,

4.1 and 4.20

The input date to be punched on the cards are contained in the
upper part of the form, that consists of 5 lines; from each line one
card arises. In the horizontal direction the upper part of the form is
divided into 7 "blocks” marked by numbers 1, 3, 20, 30, ..., 60  that
give the positions on the card from which the corresponding data are

to be punched.

BLOCK 1

Lines 1 to 5 successively contain the numbers 1, 2, 3, 4, 5 [N], which

serve to serial numbering of the cards for one specimen,

BLOCK 3

Line 1 denotation of specimen [N@M, Ng]. Chain of 12 alpha-nume-
ric characters, the blank being understood as a character.

BLOCK 20

Line 1 three asterisks (¥ X X), Of sense only as an orientation

aid in punching.
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Line 2

Line 3

Line 4

Line 5

BLOCK 30

Lines 1, 2

program-modification switch [SWT(3)]. It is formed by a
triad of digits that determine the coordinate system in
which the computation, print and punching are to be run.
The digits successively relate to the coordinate aystem
of the specimen, the geographic and tectonic coordinate
systeme. If in the given system computation and print on
the LP (computation, print on the LP and card punching)
are required, digit 1 (2) ig written in the respective
place. If no computation is required, O is written. E.g.
the digits 120 mean that in the system of the specimen
computation and print on the LP will run, in the geogra-
phic system a card will be punched in addition, in the
tectonic system no computation will be carried out, If
O occurs in the triad of digits followed by at least one
non-zero digit, the program will "subsitute™ this zero by
the digit 1, E.g. the combination 102 will be processed
as 112, combination 001 as 111,

correction for the susceptibility of the holder 1}H [THH],

see section 4.1.

correction for the specimen volume cVOL [cv], see sec-

tion 4.1.

range factor K of the used measuring range [RFK], seq

section 4.1.

sampling angles (0, ¥ (pHI, PSI].
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Lines 3 to 5 angles A, A, YV [LD, MU, NU] determining the orienta-
tion of the tectonic system. If the tectonic system is

not defined, these lines are not filled up.
BLOCK 40
Lines 1 to 5 quantities BY) to B{?) [B(1) to 3(5)], see section 4.1.
BLOCK 50
Lines 1 to 5 quantities B(®) to B‘1®) [B(6) to B(10)].
BLOCK 60
Lines 1 to 5 quentities B{11) to 13(15) [B(11) to B(15)].

This essentially exhausts the input-data survey and, in the mean-

time, also the description of the upper part of the form.

Only a few informative notes on the lower part of the form. To
the recording of the primary measured values (reading of the potencio=-
meters of the device) the right lower part of the form is designated.
Thia part contains 15 blocks with 5 lines each. Each of the blocks cor-
responds to one measuring direction, i.e. to one measuring position of
the specimen. The measuring positions are marked by arrows, see alaso
the scheme of measuring positions in fig. 1.3. From the primary data
measured in the i-th poaition the quantity B(i) is then determined
and written in the respective block and line in the upper part of the

form.

In the left lower part of the form there is room for various au-

xiliary data, for the petrographic description of the specimen, etc.
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4.1.3 Punching and composition of input data deck

The group of input data cards for one specimen is formed by six
cards. It begins by a blank (zero) card, then five cards follow, pun-
ched according to the form for measurement recording, see preceding
par. The characters written in a certain line in the individual fields
are punched from the marked positions (1, 3, 20, 30, ..., 60), closely
following each other without blanks, as far as the blanka are not es-~

pecially marked,

The input data deck for n specimens (n = i, 2, ...) conaists of
card groups for the respective specimens ranged one after the other

and from the closing, sentinel card

6 END PF DATA

that stops the computation.

In the upper part of fig. 4.3 we can find an example of input
data decks for both specimens selected the measuring of which is re-

corded in figs. 4.1 and 4.2.

4.2 OQUTPUT DATA

If the input data deck is composed properly, computation for all
the specimens will run successively, the results are printed on the
LP, one page for each specimen. If also output on the cards is requi-
red, for each specimen 1 to 3 cards, according to the program modifi-

cation, are punched, cf. par. 4.1.2.

After finishing the whole computation, the message "END @F DATA"
is printed on the LP as a check that the whole input data deck was pro-

cessed,
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The program checks the formal correctness of the composition of
the input data deck. If an erroneous group of carda occurs there, all
the names of specimens contained in the erroneous group are printed
on the LP, and each name is followed by the mesesags “ERRENEOUS DATA
CARD GROAUP - CﬂMPUTING_SU?PRESSED". The suppression of the computation
concerns the erronecus group only, the computation proceeds further in

the normal way.
4.2.1 Output on the line printer

A demonstration of printing the results on the LP can be seen in
figa. 4.4 and 4.5. They are results for specimens the input data of

which were given in fig. 4.3.

For each specimen always one page of resulte is printed. The re-
sults have the character of statistical eatimates; this circumstance
will not be emphasized, see the agreement at the beginning of chapter
3.

On the top of the left side of the page the denotation of the
aspecimen is printed [Nﬂl], that ia stressed by underlining with a row
of asteriskas. Below the denotation of the specimen is the mean suacep=-
tibility o¢[KP4] in 107® (SI system). One line lower is in the seme
units behind the denotation " + - ™ the standard error s (@) of the
mean susceptibility [SKPMA]. The mean susceptibility ie printed roun-
ded-off, The order of the least significant valid place corresponds
to the order of the error; on the placea of lower orders zeros are

printed, if neceasary.

If the order of the least significant valid place is negative,
the mean susceptibility is printed in the format with two decimal pla-
ces, otherwise without decimal places. In the right part of the hea-

ding the neme of the program ias given.
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Further results are printed in several sections; by section a
group of lines is here understood that represents, optically and logi-
cally, a certain whole. In the first section all the.input data sare
printed in the same arrangement as in the form for measurement recor-
ding. In the right side of this section there is a group of 15 data
[DEL(15)], dencted as RESIDUES. These are residual errors of the

quantities B(1) to B(1%)

y following from the least square method;
they can be also understood as errors of directional susceptibilities
expressed in divisions of the scale of the device. Immediatelly below
this group there is a datum denoted FUND. ST. ERR., [SB]. It is the
fundamental standard error of the measurement which is defined as the
standard error of the directional susceptibility; here it is expressed

in scale divisions.

The second section begins with the datum N@RMALIZED FUND. ST.
ERR., which is the fundamental standard error (i.e. the standard error
of the directional susceptibility) in the normzlized form [S]. The
normalizing factor here, as well as in other cases, is always the mean
susceptibility #€ ,Then follow statistics F, F

1
anisotropy testing, error parameters Sp120 Sp23r Sr13 [sT(3)], confi-

20 Fa3 [F, F12, F23] for

dence angles €121 €230 €43 for the significance level 90 % and 95 %
[E90(3), E95(3)].

The third section contains the normalized mean susceptibility
(that, understandably, equals one and is printed for formal reasons
only), principal susceptibilities Xy, X5, e in the nommalized form
[kp(1,1), KP(2,2), KP(3,3)] and anisotropy factors H, to He [H1 to
H6)] . Under the individual data the respective standard errors are

given, All the principal susceptibilities have the =ame standard error.

The fourth section contains the spherical coordinates of princi-
pal directions; i.e. declinations Dy, Dy, D3 [DLCL(})], inclinations

Iy, I5, 1 [1MCL(3)] =nd radial coordinates R,» Ry, Ry of the endpoints

3 3



§& = IN
9066 ° 096¢°
9600°= 2000°7T 604Lp"®
rvoto* ztuo’ Z900°1 v08g° -
0900°1 gcer’
Le1o0° £166° zZeve'.
6200° yg00°~ £200°1 9L12Z" =

¥OSNIL UIZIIVWAEN

tvo0° 9000° 90v0”* £000°
1110y £020°7 09e0°t olgo*t
9H GH vH £H

SHOL0Vd AJOULESINY

et 9°Z S°S
Rl zte 9"y 9010°
£13 ge3 213 €148

73A37 %66 ONV %06
*§379NY 30N34¢14NEBD

vgze*
1325 M
6pPES°-

gogu’
oogz°®~-
GZe6°

£000°
ot2o°y

[1,]

L510°

£2is

SNE140381a TVdIONI¥d 46 AJVHNIIYV

L° ‘¥y¥3 °*1S °*dnid

L c* g 2*s8s0t
1 5 o°t 2° 0°2407%
[ s° < v°9401
e 0~ 0°tl= 9°9401
1 Lt~ 6°~ 0*2¢01

(°Alag 37v38) s3anais3y

1°£801
6°6601
g°1901
¥°2401%
z'vsotl

(0F OSINV WYND8¥d) ALITIBILd3ISNS 40 AJGALBEINY

*z/€/¥ | [N uswioads ‘indino Jajupd au v*y bid

L0=384"°

c196°
e6gc "~
12178

T699°
LL9v°
628V"°

(SNWNI8J) SINISED *¥id VVdlINI¥d

9ouvu*
¥600°1

™

620’

Ziis

S¥3LINVAYd HOUYI

9°£9071
6°0401
8°LL0Y
£°2901
8°6901

(*AlQ 37vI8) AI¥NSVYIW vAvd

= 20V §014S14312VyVYL) §630084d
t 11 0 ogg* 299° udhl
L°es ‘gt z°vg kLY
o*gel L°9¢%2 s°see 193d
YA 286° e9g’ udk
9°62 12 »°09 9ON1
3114 L°9ve s°08¢ 1334

*d4680 1YIL1¥3dHdS * *¥ld TvdIINIYd

e (Y Y} v000°
ugee6* 9gu0°l velI0°T
) (¢) (BB

*3SNS 1YdIUNIdd G3Z[AVWAAN

LP°G0G 9r°sti 6°6SY

£24 cid E}

AdBYLESINY ¥yd SLS3L

u* iL]
u* nW
0° an
0*Sy 18d
0°09 IHd
NOILYINIIHG

a

3Alivyall t8eavr

W3LBAS
‘ayaga
alndvygRie

W3LRAS
N EL L
N3Wld348

eunu* ‘yd3 °L1s
oono*}

IsNS NV3IK
EFARALTT L

s90n0°

s
*s¥3 °18 “dANNd

~.
woou*t
up®e
negs

(16) I8Nk NV3IW

a

Qe

3Z1vaYeN

381374 3ONVH
IWNTeA Yg3d *uMgd
¥INTgH ¥gd *¥xQD

HOAIMe

2a° -
0t » gp®€01
sseSpsnsvnes

Z/e/vt ON

81



S = IN 40=3¢7°
tges” 2sre’ G82° (1415
8y01°= ry$60°1 9608 ° 66£9°~ £EUL -
g910°=  v9L0°= G6TI°E rgot® 9Z1¢°~  6£69°
2140°%} gsog® vL9L* 959g°
1971°%= 6600°t 6v29° svge’ 692("%=
1980° Y72 5 6916° TR ALY (171N G26g°%-
LI Zive® 80pg* £e00°
egTy°® 0Iv0°t U4 2 Ak £169° 0V4s°=
1080° 0¢01°%= voer*t L3 z6Ly* otze*

HOSNIL dIZITYKAGN (ENWNT1QJ) S3NESED *¥Ia V4IONINd

290u° 2g00° 6£00° v900° £v00° 2euu*
Lzy2®l sg2e’y ceons’t 2965°1 veor*l (X3 Al
9H GH H oH 2H 1G]

SH6LIVd AdONLASINY

9° 6° 6°1
G* L 9°1 9€00° esno’ £110°
e13 ge3 z14 £iLs £248 Ziis

T13A37 XS6 ANY X06

1§379NyY 30N3alined SYALIAWYHYd Nou¥u3

SNQIL0341a TIV4IININd 48 ADVHNIIY

tAd 4 *¥¥3 *1S °*ann4

9°e 0°g= 2°'s G LbeT 0t Legl M I'TA
1°ge [ e e°e G°eRlt 0°06071 604451
1°g 9°s £o¢e STl 0 LLLT 0°9spl
6° s°e~ £°¢g- 0°66¢t st /9€1 o0*uget
[ 24 L°G= [ 0°0611 u*pe0t 0°8961

(*AIQ 37v3S) €3nAIsIy (*Ald 37v38) G33nsVviW vuvd

(07 QSINY WY¥OWAd) ALLTIBILd3ISNS 40 AdOULGSINY

*€/ 1/ 1 KD uswjdads ‘yndino sajund suln o'y *Bid

a 0V SO11614310VHVYW) §S338ud 3ATLvyAL]l [8gavP
vee* rou® L2e® adh H3LKAS
["A8 ¥4 L°91 6°Q N1 ‘ayagQd
(M ¥ 6°ize e°rig 9334 JINGLDIL
£€8° 2uv® 199° edw W3LRAS
84t i%0g s°rg A0N1 *dyaed
utegt r°9e e'ive 10341 JlHdvupRas
668° 9L9° 666° tdhl WALKAS
£ 48 L°2g v TONT ‘auael
veege £°GS ere2e 9934a EMLEEPTS

‘74663 IVIIHIHAS * °¥IQ IVdIINIYd

YY) LYY ceuo* [TLTM *H¥3 °L8

26pL’ I1sGu° 6§G61°1 0000°¢§
() (¢) (3 8]
*Jsns NY3W

*3SNS IV4IINIY¥d Q3Z21TVHAEEN U3Z1YWaeN
greirgrY yuS®ige [ TAF13 14 gif00"*
ged rAY¥] 4 '

*y¥43 *1s *unnd
AdOdieSINY 494 $1S31 a3zl vhyeN
0 NN n°ot ¥613vd 3NVY

"] fiW oot INNT1gA ¥4 *yM@d

v*use a1 ngeze- 43INIGH ¥ad *¥xgd

ute i1sd 22t CEFRET]
0°g9 IHd

NQIAVINIIYG
‘ol e
(18) *9sne NY3IW 0t » ‘oveet
g 28 assnsnns
£/1/% Wl

82



Fig. 4.6 Specimen NJ 14/3/2, geographic coordinate system, principal directions and
95 % confidence angles In Lambert projection; the confidence angles are twice
magnified.
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Fig. 4. 7 Speclmen CM 1/1/2, geographic coordinate system, principal directions and
95 % confidence angles in [_Lambert projection; the confidence angles are four
times magnified.
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Fig. 4. 8 Specimen CM 1/1/3, tectonic coordinate system, principal directions and 95 %
confidence angles In Lambert projection; the confidence angles are four times
magnlified.
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of the vectors of principal directions in the Lambert projection
[LMPR(3)]. (The principal directions and their confidence angles for
the specimens considered are plotted in figs. 4.6 to 4.8.) Further,the
section contains directional cosines of the principal directions
[P(3,3)] end the components of susceptibility tensor k in the normali~
zed form [KB(3,3)]. These data are printed in all coordinate systems
required.

In the last, separate line there are data about the cours of Ja-
cobi iterative process. ACC gives a certain characterization of its
accuracy, NI states the number of iterations (of elementary transfor-
mations); details can be found in the program listing. Typical ACC va-

lues are of the order 10'6, NT usually is 5 to 8.
4.2.2 Qutput on punch cards

If required,the principal results are punched on cards. An illu-
stration of output cards for both specimens chosen can be found in the

lower part of fig. 4.3.

On the card the following data are successively punched : deno=-
tation of specimen [here N&], mean susceptibility # [KPM], fundamental
standard error 8 in the normalized form [S], components of suscepti-
bility tensor k in the normalized form [KB(1,1), KB(2,2), KB(3,3),
KB(1,2), KB(2,5), KB(1,3)], number of coordinate system [NSW]; this
number for the system of the specimen (geographic, tectoniec) is

1{2, 3).

From the output cards it is possible to compose decks for a fur-
ther program denoted ANS21, that statistically processes the results
measured on a group of specimens coming from a certain locality or a

‘certain geological body. ANS21 makes it possible to characterize the

anisotropy of magnetic susceptibility of such an object as a whole.
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