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Butler 1992 

1. Theory → Magnetization on SP/SSD Boundary 2 of 17 



Driving field 

In-Phase response 

Dia, para, MD ferro grains 

SP to SSD grains 

The response is in time lag, 
phase d 
Susceptibility resolves into 
• In-Phase (c’) 
• Out-of-Phase (c”) 
Phase angle 
tan d = c” / c’ 
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1. Viscous relaxation 
2. Electrical eddy currents (induced by AC field in 

conductive materials) 
3. Weak field hysteresis (non-linear and irreversible 

dependence of M on H) 

The mechanisms (1), (2) result in frequency dependence of both 
In-Phase and Out-of-Phase responses, the mechanism (3) yields 
signal that is frequency independent, but amplitude dependent. 

Physical Mechanisms of Out-of-Phase Response 

1. Theory → Out-of-Phase Susceptibility 

Jackson, 2003-2004, IRMQ 
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2. Instruments → Magnetic Susceptibility 

Three operating frequencies and magnetizing respective field 
ranges (in peak values) 
• 976 Hz  (~1 kHz)   2 - 700 A/m 
• 3,904 Hz (~4 kHz)   2 - 350 A/m 
• 15,616 Hz (~16 kHz)  2 - 200 A/m 

• Accuracy within one range  ±0.1 %  
• Accuracy of absolute calibration ±3.0 % 
• Variations in frequency-dependent susceptibility in the order of 

1 % are well reproducible 
     (Hrouda & Pokorny 2011, Stud. Geoph. Geod.) 

MFK2 Kappabridge 

• In-Phase susceptibility 
• Out-of-Phase susceptibility (relative value) 

Depends on: 

• Absolute value of susceptibility 
• Time & Temperature 
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• Both instruments controlled from one computer 
• Timer starts when magnetization pulse terminates 
• Repeated measurement of viscous decay of IRM 

2. Instruments → Viscous Magnetization 

LDA5/PAM1 Magnetizer & JR-6(A) Magnetometer 
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Direct field: 0 to 20 mT 
Length of Pulses: 10 ms to 10 s 



CFD = 100 × (c’LF – c’HF) / c’LF [%] 

CFN = CFD / (ln fmHF – ln fmLF)  [%] 

tan δ = χ''/ χ'  

Hrouda et al., 2013, GJI 
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…for population of grains with a wide 
distribution of relaxation times (Neél 
1949) 

Hrouda, 2011, GJI 

LF →  976 Hz  (~1 kHz)  @ 200 A/m 
HF →        15,616 Hz        (~16 kHz) @ 200 A/m 

3. Methods → Susceptibility-based Coefficients  

Dearing et al., 1996, GJI 

Frequency-dependent susceptibility 

Normalized Frequency-dependent susceptibility 
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3. Methods → Viscous Magnetization Coefficients 
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Viscous behavior Non-viscous behavior 

MVD = 100 × (IRM30 – IRM200) / IRM30  [%] 
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MVA = 100 × (IRMlong – IRMshort) / IRMlong [%] 
Worm, 1999, GRL 
Machac et al., 2007, GJI 

Viscous Acquisition 

Viscous Decay 
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Curve Fitting 



4. Samples → Xifeng Section (Xian, China) 

Xifeng Section 
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50 pilot specimens 



4. Samples → Dejvice Section (Prague, Czech Republic) 

Dejvice Section 
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4. Samples → Dejvice Section (Prague, Czech Republic) 11 of 17 

ca. 400 specimens 



5. Results → Viscous Decay of IRM (Xifeng Section) 

a) b) 

c) d) 

Coercivity distribution Normalized viscous decay of various pARM 
windows (sample # X1301) 

Viscous decay distribution 
Normalized viscous decay (all samples) 
pARM Window: 0 – 10 mT 
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a) b) 

c) d) 

5. Results → Parameter Inter-correlation (Xifeng Section) 13 of 17 



4. Samples → Dejvice Section 14 of 17 



5. Results → Parameter Inter-correlation (Dejvice Section) 
a) b) 

c) d) 
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1. CON parameter (derived from phase angle) correlates extremely well with 
the “classical” frequency-dependent susceptibility 

2. This parameter proved to be a very efficient tool for magnetic 
granulometry for loess/paleosols because each specimen is measured only 
one time which reduces time and errors 

3. Parameters based on viscous acquisition/decay correlate reasonably well 
with “classical” frequency-dependent susceptibility because both methods 
reflect the relative amount of the ultra-fine particles close to the SP/SSD 
threshold 

4. These parameters are proposed as alternative tools for magnetic 
granulometry for [not only] loess/paleosols when susceptibility signal is 
dominated by dia-, para-, or frequency-independent ferromagnetic 
fractions 

6. Conclusions 16 of 17 
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Thanks for your attention! 

 


